
Kungurtsev O. B., Chorba R. V. / Herald of Advanced Information Technology

 2023; Vol.6 No.4: 297–307

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
297

DOI: https://doi.org/10.15276/hait.06.2023.19

UDC 004.41+005.2

Task execution flow management in the software

development process under the minor change event

Оleksii B. Kungurtsev
1)

ORCID: https://orcid.org/0000-0002-3207-7315; akungurtsev19@gmail.com. Scopus Author Id: 57188743440

Radim V. Chorba
1)

ORCID: https://orcid.org/0009-0005-9879-4375; radim.chorba@gmail.com

1) Odessa Polytechnic National University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ABSTRACT

In modern project management methodologies, insufficient attention is devoted to the process of promptly responding to minor
changes during task execution, which necessitate adjustments to the priorities of ongoing tasks. The existing approaches are not
sufficiently detailed for a fundamental reassessment of priorities while such changes significantly impact project execution. The

available materials and approaches do not provide ready-made solutions. This article proposes a task planning model during project
execution. The model comprises the following key elements: Executor, Task Set, Task Execution Progress, and Calculation of Task
Execution Quality Indicators. The Executor element contains information for identifying the developer and allocating their working
time. It is anticipated that under exceptional conditions, a portion of non-working time may be scheduled for task execution. The
Task Set element represents planned temporal characteristics and the priority of each task. The Task Execution Progress element
contains information about actual dates, hours, and durations of segments during which the task was executed. The calculations of
task execution quality indicators enable obtaining operational information about the progress of specific projects and assessing the
effectiveness of process management. Basic algorithms for managing task sequences have been developed. The “Addition of a New

Task” algorithm implements a task queue based on priority and start and end dates. The “Task Priority Change” algorithm envisages
the possible repositioning of a task, as well as cases of task transfer to another executor or rescheduling tasks during non-working
hours. Additionally, algorithms for notification of critical planning changes for dependent tasks (“Notification of Critical Planning
Change for Dependent Tasks”) and critical deprioritization of dependent tasks (“Notification of Critical Deprioritization for
Dependent Tasks”) have been developed. The proposed model and algorithms allow for accommodating micro-changes in the project
and responding to their occurrence. The validation of research results in a real project demonstrated the effectiveness of the proposed
model and algorithms while concurrently revealing a certain range of open questions requiring further consideration. Future research
directions include the classification of micro-change scenarios, analysis of possible scenarios for suspending the execution of current
tasks, and the development of scenarios and algorithms for selecting executors.

Keywords: Software development; project management; tasks planning; task queue; tasks priotitization; task priority change;
project microchanges

For citation: Kungurtsev O. B., Chorba R. V. “Task execution flow management in the software development process under the minor

change event”. Herald of Advanced Information Technology. 2023; Vol. 6 No. 4: 297–307. DOI: https://doi.org/10.15276/hait.06.2023.19

1. INTRODUCTION

Commonly known solutions for planning work

on software projects, which allow for task

scheduling over a specific work period (release,

sprint in the Scrum methodology, etc.) [1, 2], [3]

include products such as Atlassian Jira, MS Project,

Primavera, Redmine, and to some extent, next-

generation products like Trello, Asana, and similar

ones. However, during the execution of a planned

block of tasks, numerous unforeseen tasks arise,

such as emergencies, urgent client inquiries,

immediate management requests, and others,

requiring resolution within a relatively short

timeframe.

© Kungurtsev O., Chorba R., 2023

Due to the distinct nature of these tasks

compared to changes in requirements, both

functional and non-functional, which are typically

outlined as product requirements, these tasks do not

directly, impact the resulting functionality of the

product. However, from a development process

perspective, these tasks have a certain priority and

are mandatory to address, thus consuming time that

could be spent on resolving production tasks. In this

article, we will refer to such tasks as “micro-

changes”. Since the nature and predicted volume of

these tasks cannot be accurately known during the

planning stage of a task block, and their impact on

the team overall work is uncertain, planning for

addressing these tasks is considered impractical.

Given that computational power of computer

systems has significantly increased in the last 5

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

Kungurtsev O. B., Chorba R. V. / Herald of Advanced Information Technology

 2023; Vol.6 No.4: 297–307

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis

298

years, but engineers' ability to create software

solutions has not grown proportionally [5], the issue

of effective planning and control of such work is

pertinent. Therefore, there is a problem of the impact

of many sporadically occurring delays from tasks,

the precise planning of which is not feasible, on the

main project execution process.

In practice, research [6] shows that less than

15% of teams declaring the use of Agile/Scrum

methodologies actually adhere to basic agile

principles [1, 3], [5]. Therefore, it is reasonable to

assume that in more than 85 % of teams working

with flexible methodologies, engineers and

managers rely on empirical approaches to

reprioritize tasks in situations of micro-change

occurrences.

Traditional planning technologies, such as

Waterfall [2], do not provide a specific mechanism

for responding to the emergence of unforeseen tasks

of the discussed type (micro-changes). High-level

project status analysis approaches within this family

of methodologies, such as Critical Path [2, 7], allow

for assessing the impact on the project delivery date

post-factum (or at each specific moment when the

deviation from the work schedule is already known).

The application of the Monte Carlo simulation

method allows for assessing risk impact to the

project and obtaining estimates of possible

deviations from the project execution plan. Based on

simulation data, the project manager can evaluate

deviations and make decisions regarding the

necessity of creating reserves regarding budget and

execution timelines. While this approach allows

estimating necessary reserves for each project phase

at the macro level, it does not provide a specific

mechanism for managing micro-changes in the

project [8].

Thus, we identify a significant gap in project

management methodologies in responding to micro-

changes, both for projects managed by classical

methodologies (Waterfall) and for modern

methodologies (Agile).

The aim of this research is to find an approach

that would enhance engineers' productivity when

micro-changes occur and experimentally validate it.

2. EXISTING SOLUTIONS REVIEW

Articles [3, 9] thoroughly emphasizes the

advantages of flexible methodologies (Agile) in a

rapidly changing environment. Indeed, this family of

project management methodologies is oriented

towards satisfying the customer as a key value.

However, the article does not propose an approach

to managing micro-changes in projects.

Furthermore, micro-changes affect both projects

managed by flexible methodologies and classical

methodologies, making the discussed problem

relevant for both approaches to the project

management.

The challenge of selecting an executor for a

task is analyzed in article [10]. The authors suggest a

mathematicl method for selecting a task executor

based on each engineer's capabilities and task

execution needs, using multi-factor analysis.

However, the article does not consider the execution

of an algorithm in a situation where engineers are

already working on a block of tasks, and a new

micro-change, to some extent, affects the tasks they

are already performing or will perform in the current

work block. The research also does not address the

frequency of task switching as an important factor

that needs to be avoided to protect engineers from

burnout and, consequently, a sharp decrease in

productivity [11]. The article only considers the

application of the methodology for Agile

methodology, while, as mentioned earlier, micro-

changes can also impact projects executed using

traditional methodologies.

Research [12] proposes a modern multi-criteria

approach to task allocation based on machine

learning technologies. Despite advocating its

applicability to flexible methodologies in the article,

we anticipate that the approach can also be used in

classical project management methodologies.

In the study [13], the impact of context

changes, which are a specific case of micro-changes,

on the productivity of engineers working in a multi-

project environment is analyzed. However,

recommendations for mechanisms to minimize loss

of production time are not provided.

In article [14], the author focuses on studying

the reasons for interruptions in the work process,

which in some cases also constitute micro-changes,

and their impact on the productivity of engineers.

The article offers only general approaches to

reducing the negative effect of interruptions without

specific action algorithms.

Considering characteristics of micro-changes

such as their potential urgency and potentially short

task execution period, it is necessary to note that the

Kungurtsev O. B., Chorba R. V. / Herald of Advanced Information Technology

 2023; Vol.6 No.4: 297–307

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
299

described approaches do not fully consider the need

to support a comfortable working environment. As

noted in materials [15, 16], [17], frequent task

switching, changing focus, and other abrupt changes

in activity significantly negatively impact the

productivity of engineers and, as a result, lead to

emotional burnout, resulting in a catastrophic drop

in engineer productivity and, consequently, failure

of task delivery deadlines.

From the presented analysis, it is evident that

there is a pressing need to develop an algorithm for

task reprioritization for a team in the event of a

micro-change during the execution of a planned

block of work. Such an algorithm should aim to

simplify the decision-making process during the

micro-change handling [18, 19] and increase team

productivity by reducing forced stoppage time and

minimizing context switches.

3. GOAL AND TASKS OF THE

RESEARCH

The aim of this study is to enhance the

productivity of engineering teams by improving the

task reprioritization algorithm considering the

micro-changes in a project.

To achieve the stated goal, the following tasks

need to be addressed:

1. Develop a model for task planning in the

project, taking into account micro-changes.

2. Design an algorithm to respond to the

addition of a new task in the current iteration of the

project.

3. Develop an algorithm to respond to changes

in the priority of a task in the current iteration of the

project.

4. Create algorithms for notifying stakeholders

of changes.

4. MODEL

It is proposed to present the scheduler model in

the form of a tuple:

𝑃𝑙𝑎𝑛𝑛𝑒𝑟 = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑟,𝑚𝑇𝑎𝑠𝑘,

𝑡𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛, 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 >,
(1)

where Performer – engineer assigned to the task;

mTask – set of the tasks; taskCompletion is flow of

the task execution; Statistics – are calculations on

the information stored in the model.

The “performer” element should contain

information to identify the developer and allocate his

working time (schedule):

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑟 = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑟𝑁𝑎𝑚𝑒, 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 >, (2)

where PerformerName – name of the engineer;

Schedule – his working schedule.

Taking into account the possible micro-changes

described above, it is proposed to outline the

schedule this way:

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 =

𝑟𝑒𝑠𝑡𝑇𝑖𝑚𝑒, 𝑛𝑜𝑛𝑊𝑜𝑟𝑘𝑇𝑖𝑚𝑒,𝑤𝑜𝑟𝑘𝑇𝑖𝑚𝑒 >,
(3)

where restTime – rest time, not subject to work

planning; nonWorkTime – are non-working hours,

may be scheduled to perform work under emergency

conditions; workTime – working time, subject to

work planning.

Rest time is to be presented by a tuple:

𝑟𝑒𝑠𝑡𝑇𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒𝐵, 𝑡𝑖𝑚𝑒𝐹 >, (4)

where timeB – beginninig of the time period (in form

of a time of the day, for example, 23:00); timeF –

ending of a time period (in form of a time of the

day, for example, 7:00).

Non-working time is fragmented and consists

of separate elements (Piecei), for each of which the

duration is indicated in the time of day, for example,

7:00 – 9:00, 17:00 – 23:00.

𝑛𝑜𝑛𝑊𝑜𝑟𝑘𝑇𝑖𝑚𝑒 = {𝑚𝑃𝑖𝑒𝑐𝑒𝑁𝑖}𝑖 = 1, ℎ, (5)

where 𝑝𝑖𝑒𝑐𝑒𝑖 = 𝑡𝑖𝑚𝑒𝐵𝑁𝑖. 𝑡𝑖𝑚𝑒𝐹𝑁𝑖 > .

Working time is fragmented by segments of

time allocated for work:

𝑤𝑜𝑟𝑘𝑇𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒𝐵, 𝑡𝑖𝑚𝑒𝐹, 𝑚𝑃𝑖𝑒𝑐𝑒 >, (6)

where 𝑡𝑖𝑚𝑒𝐵 – the beginning of a working time;

𝑡𝑖𝑚𝑒𝐹 is the ending of a working time; 𝑚𝑃𝑖𝑒𝑐𝑒 – a

set of time fragments: 𝑚𝑃𝑖𝑒𝑐𝑒 = {𝑝𝑖𝑒𝑐𝑒𝑗}, 𝑗 = 1, 𝑘.

The number of fragments is determined by

tasks and their distribution in time; if there is a

single task, the set contains one element.

The maximum length of the fragment –

minuteMax is equal to the duration of the working

day, which is defined in the organization. The

minimum length of the fragment – minuteMin is

determined by the ability of the developer to switch

to a new task and perform the minimally significant

work for this task. Let us consider 𝑚𝑖𝑛𝑢𝑡𝑒𝑀 ∈≥

1ℎ𝑜𝑢𝑟.

Each fragment can be presented in way:

𝑝𝑖𝑒𝑐𝑒𝑗 = 𝑖𝑑𝑇𝑖, 𝑡𝑖𝑚𝑒𝐵𝑗,𝑚𝑖𝑛𝑢𝑡𝑒𝑁𝑗 >,

Kungurtsev O. B., Chorba R. V. / Herald of Advanced Information Technology

 2023; Vol.6 No.4: 297–307

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis

300

where 𝑖𝑑𝑇𝑖 – task identifier, if there is no task it is

set to zero; 𝑡𝑖𝑚𝑒𝐵𝑗 – time of the schedeuled

beginning of the task execution; 𝑚𝑖𝑛𝑢𝑡𝑒𝑁𝑗 –

estimated amount of minutes for the task execution.

In exceptional cases, some tasks may be

performed outside working hours. In this case, it will

be presented similarly to working hours:

𝑛𝑜𝑛𝑊𝑜𝑟𝑘𝑇𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒𝐵, 𝑡𝑖𝑚𝑒𝐹,𝑚𝑃𝑖𝑒𝑐𝑒 >

𝑝𝑖𝑒𝑐𝑒𝑗 = 𝑖𝑑𝑇𝑖, 𝑡𝑖𝑚𝑒𝐵𝑗,𝑚𝑖𝑛𝑢𝑡𝑒𝑁𝑗 >.

Notification – communication to the person

involved into a process in some role. It is used to

inform the stakeholder or engineer about a change in

the status of the task. It can be a reminder about the

need to perform the task (sent to the engineer

responsible for the task), information about a change

in prioritization, a notice of cancellation of the task

or other, which is sent to the customer requested the

task.

It is suggested to submit the message in the

form of a tuple:

𝑁𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑒𝑥𝑡𝑇′, Task,
NotrifType, NotifFreq>,

(7)

where 𝑇𝑒𝑥𝑡𝑇′ – notification text; Task – task to

which notification is related; NotifType – type of

the notification from the set (‘remainder’,

‘priorityAlert’, ‘movedToQueueAlert’,

’taskCancelledAlert’); NotifFreq is frequency of the

notification.

Task is outlined as a set:

𝑚𝑇𝑎𝑠𝑘 = {𝑡𝑎𝑠𝑘𝑖}𝑖 = 1, 𝑛𝑇𝑎𝑠𝑘, (8)

where each task is a tuple:

𝑇𝑎𝑠𝑘 = 𝑇𝑒𝑥𝑡𝑇, 𝑖𝑑𝑇, 𝑇𝑖𝑚𝑒𝐵, 𝑇𝑖𝑚𝑒𝐹,

𝐷𝑢𝑟, 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦, 𝑇𝑖𝑚𝑒𝐹𝑅,𝐷𝑢𝑟𝑅,
𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟, 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 >,

(9)

𝑤ℎ𝑒𝑟𝑒𝑇𝑒𝑥𝑡𝑇 – task description; 𝑖𝑑𝑇 – task

identifier; 𝑇𝑖𝑚𝑒𝐵 – expected time of the beginning

of work on the task (date, time); 𝑇𝑖𝑚𝑒𝐹 – expected

(requested) task delivery date (date, time). This field

may not be filled in if a specific date and time when

the task must be completed has not been received

from the customer. However, the team during

iteration planning can set or change this value

downwards in a situation where the execution of this

task from the team's point of view blocks other tasks

or for some reasons this task must be completed

earlier; 𝐷𝑢𝑟 – estimated task execution timeframe

(amount of hours and minutes); 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 – task

priority.

Values of priority are: P0 – Critical (needs to be

executed as soon as possible); P1 – High (execute

with priority); P2 – Normal (default priority); P3 –

Low (nice to have this task executed); P4 – Minimal

(if there is no any higher priority task); 𝑇𝑖𝑚𝑒𝐹𝑅 –

real task completion time (date, time); 𝐷𝑢𝑟𝑅 – real

task execution timeframe (amount of hours and

minutes); 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 – requestor of the

task;𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 – set of the tasks which are

dependent on this task (can be empty).

The execution of the task involves the

determination of real dates, hours and duration of

fragments during which the task was performed.

𝑡𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 = 𝑖𝑑𝑇,𝑚𝑃𝑖𝑒𝑐𝑒′ >, (10)

where 𝑚𝑃𝑖𝑒𝑐𝑒′ – set of time segments during which

the task was performed.

Each segment is defined by a start time and a

duration

𝑝𝑖𝑒𝑐𝑒′ = 𝑡𝑖𝑚𝑒𝐵′,𝑚𝑖𝑛𝑢𝑡𝑒𝑁 >.

Calculations based on model data. The data

contained within the model allow for obtaining real-

time information about the progress of specific

projects and assessing the effectiveness of managing

the design process.

Below are some possible computational quality

management characteristics:

 Deviation between actual and planned task

execution times.

 Degree of plan execution.

 Relative quantity of canceled tasks.

 Degree of execution of canceled tasks.

 Relative quantity of tasks not completed on

time.

 Relative quantity of tasks not completed.

 Utilization of working time.

 Task management algorithms

Algorithm 1 – Add a new task

Tasks are added to the execution queue based on

priority and specific start and/or completion times if

specified. Various scenarios of task addition during

the iteration execution phase are illustrated in Fig. 1.

Fig. 1 depicts the initial work plan in the first

block, consisting of three tasks with priorities of 1,

1, and 2, and durations of 12, 8, and 8 time units,

respectively. The timeline is oriented from left to

right, with task 1 being in progress for 4 time units.

Kungurtsev O. B., Chorba R. V. / Herald of Advanced Information Technology

 2023; Vol.6 No.4: 297–307

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
301

Fig.1. Time diagrams of some task addition scenarios
Source: compiled by the authors

Microchanges are represented in three blocks.

Scenario 1 involves adding a task with an urgent

priority (P0), which needs to be completed

immediately. An example of such a task could be an

emergency or unforeseen force majeure

circumstances. In this case, the execution of Task 1

is urgently halted, and Task 4 is taken up for

execution. After completing Task 4, work on Task 1

resumes. The priority of other tasks remains

unchanged, but they are shifted along the timeline.

In scenario 2, Task 4 is added, also with an

urgent priority, but the start and end times of this

task are specified, and the start time does not

coincide with the current time. Thus, the execution

of Task 1 will be interrupted to perform Task 4, but

this interruption will not be urgent. Similar to

scenario 1, after completing Task 4, work on Task 1

resumes. The priority of other tasks remains

unchanged, but they are shifted along the timeline.

Scenario 3 involves the appearance of Task 4

with the same priority as the task currently being

executed. Unlike previous scenarios, the new task is

placed in the queue according to priority, i.e.,

between tasks 2 and 3. In this case, only Task 3

progresses along the timeline.

Scenarios of adding a task with a priority lower

than any of the planned tasks are not shown in the

figure, as it is evident that such a task will be put to

the end of the queue.

1.1.Task is received in the form of

𝑇𝑎𝑠𝑘𝑗 = 𝑇𝑒𝑥𝑡𝑇𝑗, 𝑇𝑖𝑚𝑒𝐹𝑗, 𝐷𝑢𝑟𝑗,

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑗, 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑗 >.

1.2. Task identifier is created automatially.

1.3. 𝑇𝑖𝑚𝑒𝐵 is set to the current date and time if

not provided explicitly for the task.

1.4. The availability of time to complete the

𝑇𝑎𝑠𝑘𝑗 is checked. The time free from work tl is

identified in the 𝑤𝑜𝑟𝑘𝑇𝑖𝑚𝑒 set.

 Options:

1.4.1. There is enough time tl≥ 𝐷𝑢𝑟𝑗 .

1.4.1.1. If there is a task in the schedule with a

lower priority than 𝑇𝑎𝑠𝑘𝑗 and its due date allows to

move it to the right (later time), then the shift and

insertion is performed according to the priority of

the tasks in such a way that priority tasks, as well as

tasks with an earlier due date, are executed first.

1.4.1.2. For every task which was affected,

TimeS is changed by adding 𝐷𝑢𝑟𝑗 value.

1.4.1.3. For the new task TimeS is set to

𝑇𝑖𝑚𝑒𝑆𝑖 + 𝐷𝑢𝑟𝑖 , where i is the index of the task

which is pereceding to the newly added.

1.4.2. There is no enough time 𝑡𝑙 < 𝐷𝑢𝑟𝑗.

1.4.2.1. If task 𝑇𝑎𝑠𝑘𝑗 has 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑗 <=

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 , which means thet priority of the newly

added task is lower than priority for the tasks which

were planned already, for each of 𝑚𝑇𝑎𝑠𝑘 in the

𝑤𝑜𝑟𝑘𝑇𝑖𝑚𝑒 set, system reports the inability to plan

the task 𝑇𝑎𝑠𝑘𝑗 within the normal working time

schedule for the given engineer.

The options proposed are:

– transfer 𝑇𝑎𝑠𝑘𝑗 to another developer;

– request the possibility for the developer to

perform the task within the nonWorkTime time

Kungurtsev O. B., Chorba R. V. / Herald of Advanced Information Technology

 2023; Vol.6 No.4: 297–307

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis

302

period (in case of the negative answer, this step is

repeated but this option becomes unavalable);

– cancel the execution of the task in the current

iteration and put the task in the queue for planning

and execution in normal mode (to the backlog);

– reject the execution of the task, which means

task will be not executed at all.

1.4.2.2. If task 𝑇𝑎𝑠𝑘𝑗 has 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑗 >

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖, which means that priority of the new tas

is bigger than at least one of the tasks in 𝑚𝑇𝑎𝑠𝑘 in

the 𝑤𝑜𝑟𝑘𝑇𝑖𝑚𝑒 timeframe, task 𝑇𝑎𝑠𝑘𝑗 is inserted

before the first task for which 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑗 >

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖. For the rest of the tasks possibility to

keep the task in the iteration is analysed. Rest of the

tasks are analysed for the possibility to keep them

within the current iteration, considering the

𝑤𝑜𝑟𝑘𝑇𝑖𝑚𝑒, corresponding to the initial sequence,

which means decreasing 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 and increasing

𝑇𝑖𝑚𝑒𝐹. At the same time, TimeS is changed by

adding the value of 𝐷𝑢𝑟𝑗

For the tasks which can not be kept in the

𝑤𝑜𝑟𝑘𝑇𝑖𝑚𝑒 timeframe, the following options are

available:

– transfer task to another developer;

– request the possibility for the developer to

perform the task within the nonWorkTime time

period (in case of the negative answer, this step is

repeated but this option becomes unavalable).

1.5. In the situation when the algorithm

execution has reached this step, meaning the task is

placed in the execution plan, and also for the very

first task in 𝑚𝑇𝑎𝑠𝑘 condition 𝑃𝑟𝑖𝑜𝑖𝑡𝑦𝑗 >𝑃𝑟𝑖𝑜𝑖𝑡𝑦0 is

true, which means that current task has a lower

priority than the new one. The question arises about

the appropriateness and the most opportune moment

to interrupt the execution of the current task. This is

exactly the question that I aim to address in my

work. Due to operational necessity, such a need

arises often; however, the delay caused by

interrupting the ongoing task is usually much greater

than the sum of the durations of the interrupting

tasks. This introduces additional delays and risks to

the execution of the current block of project tasks.

1.6. Information about changes in the task

execution plan is stored in Statistics

1.7. Algorithm 3 and algorithm 4 are executed.

Algorithm 2 – Changing the priority of one

of the tasks in the current iteration

If it is necessary to change the priority of the

task, its position in the execution queue will change

according to the new priority and the start and end

dates, if they are set.

2.1. Priority change is accepted in form of

𝑖𝑑𝑇, 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦’, where 𝑖𝑑𝑇 is the task identifier;

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦’ is the new priority

2.2. New position for the 𝑇𝑎𝑠𝑘𝑖 is determined.

2.2.1. If 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 < 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦′ which means

task priority is increased, the new position is found

by traversing the 𝑚𝑇𝑎𝑠𝑘 by increasing the index

until both conditions are met: 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦′ ≥

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 and 𝑇𝑖𝑚𝑒𝐹 ≤ 𝑇𝑖𝑚𝑒𝐹𝑖.
2.2.2. In other case, new position is found by

traverse 𝑚𝑇𝑎𝑠𝑘 by decreaseing index until both

conditions are met: 𝑃𝑟𝑖𝑜𝑟𝑡𝑦′ ≤ 𝑃𝑟𝑖𝑜𝑟𝑡𝑦𝑖 and

𝑇𝑖𝑚𝑒𝐹 ≥ 𝑇𝑖𝑚𝑒𝐹𝑖.
2.3. The task is moved to a new position, while

the rest of the tasks are shifted while preserving the

original order.

2.3.1. If the new position of the task is equals to

zero, which means that the task must replace the task

currently being performed, the question arises about

the need to interrupt the execution of the current

task, similar to the one considered in clause 1.5.

2.4. For each task starting from the new

position, estimated start time is updated as

𝑇𝑖𝑚𝑒𝑆𝑖 = 𝑇𝑖𝑚𝑒𝑆𝑖−1 + 𝐷𝑢𝑟𝑖−1.

2.5. For each task starting from the new

position, condition TimeS + Dur > TimeF is

verified.

2.5.1. For those tasks where this condition is

true, the task completion deadline will be violated.

Options available are:

 transfer the task to another developer;

 offer the selected developer to complete the

task in the nonWorkTime timeframe (in case of the

negative answer, this iteration of the algorithm is

repeated, but this option becomes unavailable);

 ignore (in this case, it is accepted as normal

that the result of the task will be delivered later than

the expected deadline).

2.6. Information about changes in the task

execution plan is stored in Statistics

2.7. Algorithm 3 is executed.

Kungurtsev O. B., Chorba R. V. / Herald of Advanced Information Technology

 2023; Vol.6 No.4: 297–307

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
303

Algorithm 3 – Notification of a critical

change in the planning of dependent tasks

As a result of the operation of Algorithms 1 and

2, caused by a microchange, for some tasks the

expected completion time may change in such a way

that it turns out to be greater than what is requested

in the task. In this case, it is necessary to notify the

customer about a possible delay.

3.1. All tasks affected by the priority change

are recursively detected as the result of execution of

algorithm 1 or 2

3.2. For those with TimeS + Dur > TimeF,

Notification is sent to the 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟. Notification

has Task equals to the current task in question,

NotifType equals to 'priorityAlert', TextT contains

the details of the impact on the task rescheduling,

including the potential affect on the TimeF.

3.3. Notification is not performed for the rest of

the tasks.

Algorithm 4 – Notification regarding critical

prioritization of dependent tasks

As a result of the execution of Algorithm 1,

caused by a microchange, a decision may be made

for part of the tasks to cancel its execution in the

current iteration or its impracticality. In this case, it

is necessary to notify the customer about a critical

change in the work schedule for the task requested

by him.

4.1. 𝑁𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 is sent for every task pushed

out of the iteration. 𝑁𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 has Task equals to

the current analysed task, NotifType equals to

‘movedToQueueAlert’, 𝑇𝑒𝑥𝑡𝑇′ with the details of

the critical priority change and inability to meet the

deadline.

4.2. 𝑁𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 is sent for each task which

was cancelled on the step 1.4.2.1. 𝑁𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 has

Task equals to the current analysed task, NotifType

equals to ‘taskCancelledAlert’, 𝑇𝑒𝑥𝑡𝑇′ with the

information of the inability to execute the task.

5. PROBATION OF THE RESULTS

OBTAINED

To conduct the scientific research, testing of the

proposed models and algorithms was carried out on

a real project. Since, as mentioned above, tasks in

projects vary in duration, to validate the model and

assess the efficiency of the proposed algorithms, it is

necessary to gather information that closely

approximates natural conditions.

To ensure the validity of the testing, the project

team chosen as experimental must meet the

requirements of a Scrum team, as described earlier,

and the project performance results, as well as the

measured characteristics, must be predictable to

avoid the influence of fluctuations on measurement

outcomes.

To meet these requirements, a real software

development project was selected, susceptible to the

influence of micro changes, and for which historical

information was available to populate the model.

Additionally, the actual application of algorithms in

this project allows tracking changes in results.

As the experimental project, a development

project in a stable state was chosen (project duration:

7 years, product release cycle: 3 months, project

management methodology: Scrum, sprint duration: 2

weeks, team composition changes: absent, project

team composition: 2 Scrum teams, totaling 15

engineers).

Before the experiment began, the team and the

project were in a stable state, releasing planned sets

of new features without significant quality problems

(an average of 1 hotfix per year from 2019 to 2022).

There is no documented methodology for

responding to micro changes in the project.

Therefore, the system chosen for the

experiment meets all the specified requirements and

has sufficient stability characteristics to exclude the

influence of random factors on the experiment

results.

The chosen evaluation criterion was the

percentage of unfinished tasks at the end of a two-

week development iteration (sprint). Preliminary

analysis showed that this parameter has a certain

cycle associated with the completion of the release

cycle. Due to the organization work specifics, on the

last iteration of the release cycle, the team focuses

on testing (the percentage of unfinished tasks is

minimal), while on the first iteration of the new

release cycle, the team transitions to new

functionality (the percentage of unfinished tasks is

maximal). Subsequently, during the release cycle,

the considered indicator typically decreases (see

Figure 2, the considered indicator is shown on the

graph with a thin line, the trend line is thick). Here,

the completion of the release cycle falls on iterations

1, 7, and 13, and the start corresponds to iterations 2,

8, and 14.

Kungurtsev O. B., Chorba R. V. / Herald of Advanced Information Technology

 2023; Vol.6 No.4: 297–307

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis

304

Fig.2. The dynamics of changes in the share of incomplete tasks during iterations, 2023
Source: compiled by the authors

The experiment started from iteration 12 (one

iteration before the completion of the release cycle,

considered the safest moment for implementing

changes). In Fig. 2, the trend line for the percentage

of tasks not completed on time is shown by a thick

line, calculated as the average of 4 samples. It can be

seen that the application of algorithms reduced the

average percentage of unfinished tasks by the end of

the iteration. The calculation shows that the average

percentage of unfinished tasks since the start of the

experiment was 14.7 %, whereas before the

experiment, this indicator was 18.3%. Thus, the

experiment confirmed the positive impact of

applying algorithms on team productivity.

However, the experiment revealed several areas

that require further improvement.

In the scenario of canceling a task scheduled for

an iteration, additional free time arises. Typically, in

practice, tasks are postponed to fill the freed time

interval. Since this situation does not create

additional risks for the project progress, its

importance is less obvious, but it also creates a

moment of uncertainty for engineers. The algorithm

for this scenario should be formalized, despite the

apparent simplicity of the situation.

The scenario where a task is completed before

the deadline also does not create risks for the

project, but this micro change also affects the start

dates of subsequent tasks, similar to point 1.

The scenario of delaying task completion is

similar to scenario 2, except that in this case, risks

for the project are created, and notification may be

required.

Observations 1-3 led to an understanding of the

need to classify micro changes as such and analyze

the reasons for their occurrence.

The relevance of studying scenarios of

interrupting the execution of the current task was

confirmed, as this scenario creates a moment of

uncertainty in the team, often blocks the work of

more than one engineer, necessitates frequent

context switching, and, consequently, introduces

significant risks to the project progress.

6. CONCLUSIONS

A model has been created that allows for the

collection and analysis of task planning indicators in

a project, taking into account micro changes. An

algorithm has been developed to respond to the

addition of a new task to the project. An algorithm

has been developed to respond to changes in the

priority of existing tasks. Algorithms for notifying

stakeholders in case of changes in task execution

deadlines, leading to violations of commitments

regarding their completion, have been developed.

Kungurtsev O. B., Chorba R. V. / Herald of Advanced Information Technology

 2023; Vol.6 No.4: 297–307

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
305

The model and algorithms were tested on a real

project, and performance characteristics were

collected and analyzed before and after the

experiment, confirming the effectiveness of the

algorithm.

Further research directions include:

 Clasterization [20] and/or classification of

scenarios of micro changes and development of the

formal response algorithms

 Analysis of possible scenarios for suspending

the execution of the current task to increase team

productivity by minimizing time losses for context

switching and reducing engineers' stress levels.

 Development of scenarios and algorithms for

choosing developer in situations where tasks need to

be transferred to another engineer, targeting for

minimizing time losses.

REFERENCES

1. Srivastava, A., Bhardwaj, S. & Saraswat S. “SCRUM model for agile methodology”. 2017

International Conference on Computing, Communication and Automation (ICCCA). Greater Noida: India.

2017. p. 864–869. DOI: https://doi.org/10.1109/CCAA.2017.8229928.

2. “PMBOK® Guide (2021)”. – Available from: https://www.pmi.org/pmbok-guide-

standards/foundational/pmbok. – [Accessed: 28 July 2022]

3. Kolesnikova, K. V. & Lukianov, D. V. “Analysis of the effectiveness of combining the roles of

scrummaster and product owner in ScrumTeams”. Herald of Advanced Information Technology. 2021; 4 (1):

67–74. DOI: https://doi.org/10.15276/hait.01.2021.6.

4. Morana, G. “The beginning of a cognitive software engineering era with Self-Managing

applications”. IEEE/ACM 1st International Workshop on Software Engineering for Cognitive Services

(SE4COG). Gothenburg, Sweden. 2018. p. 1–4,

https://www.scopus.com/authid/detail.uri?authorId=57197846381.

5. West, D. “What are the three scrum roles?” – Available from:

https://www.atlassian.com/agile/scrum/roles. – [Accessed: 28 July 2022].

6. Kuhrmann, M. et al. “What makes agile software development agile?” In IEEE Transactions on

Software Engineering. 2022; 48 (9): 3523–3539, https://www.scopus.com/authid/detail.uri?

Authored=14015954200. DOI: https://doi.org/10.1109/TSE.2021.3099532.

7. Saradhi, B. P., et al. “Hesitant fuzzy project planning and scheduling using critical path technique”.

Turkish Journal of Computer and Mathematics Education. 2021; 12 (6): 5272–5286. – Available from:

https://www.proquest.com/openview/e67e5f6cf7af6b9342f39a41bf50d526/1 – [Accessed: 28 July 2022].

8. Galli, B. Jh. “Statistical tools and their impact on project management–how they relate”. The Journal

of Modern Project Management, 2021, 9 (2): 129–143.

https://www.scopus.com/authid/detail.uri?authorId=35931897100.

9. Biliavskyi, V. M. & Antoniuk, О. V. “Agile management tools and their impact on the effectiveness

of project implementation” (in Ukrainian). Aviation, Industry, Society: IV International Science and Practice

Conf. Kremenchuk: Ukraine. 2023. p. 712–714.

10. Aslam. W. & Ijaz, F. “A quantitative framework for task allocation in distributed agile software

development”. In IEEE Access. 2018; 6: 15380–15390, https://www.scopus.com/authid/detail.uri?

authorId=34972616300. DOI: https://doi.org/10.1109/ACCESS.2018.2803685.

11. Pachler, D., Kuonath, A., Specht, J., Kennecke, S., Agthe, M. & Frey, D. “Workflow interruptions

and employee work outcomes: The moderating role of polychronicity”. Journal of Occupational Health

Psychology. 2018; 23 (3), 417–427, https://www.scopus.com/authid/detail.uri?authorId=57195740187.

DOI: https://doi.org/10.1037/ocp0000094.

12. William, P., Kumar, P., G. S. Chhabra & K. Vengatesan, “Task allocation in distributed agile

software development using machine learning approach”. International Conference on Disruptive

Technologies for Multi-Disciplinary Research and Applications (CENTCON). Bengaluru: India. 2021.

p. 168–172, https://www.scopus.com/authid/detail.uri?authorId=57433493200.

DOI: https://doi.org/10.1109/CENTCON52345.2021.9688114.

Kungurtsev O. B., Chorba R. V. / Herald of Advanced Information Technology

 2023; Vol.6 No.4: 297–307

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis

306

13. Tregubov, A., Boehm, B., Rodchenko, N. & Lane, J. A. “Impact of task switching and work

interruptions on software development processes”. In: Proceedings of the 2017 International Conference on

Software and System Process (ICSSP 2017). Association for Computing Machinery. New York: USA. 2017.

p. 134–138, https://www.scopus.com/authid/detail.uri?authorId=56764212800.

DOI: https://doi.org/10.1145/3084100.3084116.

14. Abad, Z. S. H., Karras, O., Schneider, K., Barker, K. & Bauer, M. “Task interruption in software

development projects: What makes some interruptions more disruptive than others?” In: Proceedings of the

22nd International Conference on Evaluation and Assessment in Software Engineering (EASE '18).

Association for Computing Machinery. New York: USA. 2018. p. 122–132.

DOI: https://doi.org/10.1145/3210459.3210471.

15. Wiesche, M. “Interruptions in agile software development teams”. Project Management Journal.

2021, 52 (2), 210–222, https://www.scopus.com/authid/detail.uri?authorId=42962873700.

DOI: https://doi.org/10.1177/8756972821991365.

16. Walker, A “Surviving the zombie apocalypse”. – Available from:

https://www.infoq.com/presentations/career-skills-self-management. – [Accessed: 28 July 2022].

17. Khristich, A. L., Kolot, S. A. & Polic, V. “Designing a professional burnout correction program

based on life-purpose orientations in wartime conditions”. Herald of Advanced Information Technology.

2023; 6 (1): 81–96. DOI: https://doi.org/10.15276/hait.06.2023.6.

18. Oborskyi, H. O., Saveleva, O. S., Stanovska, I. I. & Saukh, I. A. “The information technologies of

anti-crisis solutions search in complex dynamic systems management”. Applied Aspects of Information

Technology. 2020; 3 (2): 72–82. DOI: https://doi.org/10.15276/hait.02.2020.7.

19. Olekh, H. S., Prokopovych, I. V., Olekh, T. M. & Kolesnikova, K. V. “Elaboration of a Markov

model of project success”. Applied Aspects of Information Technology. 2020; 3 (3): 191–202.

DOI: https://doi.org/10.15276/aait.03.2020.7.

20. Kungurtsev, O., Zinovatna, S., Potochniak, Ya. & Novikova, N. “Development of methods for pre-

clustering and virtual merging of short documents for building domain dictionaries”. Eastern-European

Journal of Enterprise Technologies. 2020; 5 (2(107)): 39–47,

https://www.scopus.com/authid/detail.uri?authorId=57188743440. DOI: http://doi.org/10.15587/1729-

4061.2020.215190.

Conflicts of Interest: the authors declare no conflict of interest

Received 04.09.2023

Received after revision 30.11.2023

Accepted 11.12.2023

DOI: https://doi.org/10.15276/hait.06.2023.19

УДК 004.41+005.2

Планування потоку завдань в умовах мінорних змін в

процесі створення програмного забезпечення

Кунгурцев Олексій Борисович
1)

ORCID: https://orcid.org/0000-0002-3207-7315; akungurtsev19@gmail.com. Scopus Author Id: 57188743440

Чорба Радім Валерійович
1)

ORCID: https://orcid.org/0009-0005-9879-4375; radim.chorba@gmail.com

1) Національний університет «Одеська політехніка», пр. Шевченка, 1. Одеса, 65044, Україна

Kungurtsev O. B., Chorba R. V. / Herald of Advanced Information Technology

 2023; Vol.6 No.4: 297–307

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Theoretical aspects of computer science,

programming and data analysis
307

АНОТАЦІЯ

У сучасних методиках управління проектами недостатньо уваги приділяється процесу оперативного реагування на

мінорні зміни під час виконання завдань, які вимагають коригування пріоритетів поточних завдань. Існуючі підходи

недостатньо деталізовані для фундаментальної переоцінки пріоритетів в умовах суттєвого впливу таких змін на виконання

проекту. Наявні матеріали та підходи не надають готових рішень. У цій статті пропонується модель планування завдань під

час виконання проекту. Модель включає наступні ключові елементи: Виконавець, Набір Завдань, Прогрес Виконання

Завдань та Обчислення Індикаторів Якості Виконання Завдань. Елемент Виконавця містить інформацію для ідентифікації

розробника та розподілу його робочого часу. Передбачається, що в особливих умовах частину неробочого часу можна

запланувати для виконання завдань. Елемент Набору Завдань представляє заплановані часові характеристики та пріоритет

кожного завдання. Елемент Прогресу Виконання Завдань містить інформацію про фактичні дати, години та тривалість

сегментів, під час яких виконувалася завдання. Розрахунки індикаторів якості виконання завдань дозволяють отримати

оперативну інформацію про хід конкретних проектів та оцінювати ефективність управління процесами. Розроблено основні

алгоритми управління послідовностями завдань. Алгоритм «Додавання нового завдання» реалізує чергу завдань на основі

пріоритету та дат початку та закінчення. Алгоритм «Зміна пріоритету завдання» передбачає можливе перепозиціонування

завдання, а також випадки перенесення завдання на іншого виконавця чи перепланування завдань під час неробочих годин.

Крім того, розроблено алгоритми для сповіщення про критичні зміни планування для залежних завдань («Сповіщення про

критичні зміни планування для залежних завдань») та критичного зниження пріоритету для залежних завдань («Сповіщення

про критичне зниження пріоритету для залежних завдань»). Запропонована модель та алгоритми дозволяють враховувати

мікрозміни в проекті та реагувати на їх виникнення. Підтвердження результатів дослідження на реальному проекті

продемонструвало ефективність запропонованої моделі та алгоритмів, водночас виявивши певний ряд відкритих питань, які

потребують подальшого вивчення. Майбутні напрямки досліджень включають класифікацію сценаріїв мікрозмін, аналіз

можливих сценаріїв призупинення виконання поточних завдань та розробку сценаріїв та алгоритмів для вибору виконавців.

Ключові слова: програмне забезпечення; керування проектом; планування завдань; черга завдань, пріоритети

завдань; зміна пріоритетів завдань, мікрозміни проекта

ABOUT THE AUTHORS

Оleksii B. Kungurtsev - PhD, Professor, Professor of the Department of Software Engineering. Odessa Polytechnic

National University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ORCID: https://orcid.org/0000-0002-3207-7315; akungurtsev19@gmail.com. Scopus Author Id: 57188743440

Research field: Methods and means of increasing the productivity of information systems; communication means with

automated systems in natural language

Кунгурцев Олексій Борисович - кандидат технічних наук, професор кафедри Інженерії програмного

забезпечення Національного університету «Одеська політехніка», пр. Шевченка, 1. Одеса, 65044, Україна

Radim V. Chorba - Postgraduate student of the Department of Software Engineering. Odessa Polytechnic National

University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ORCID: https://orcid.org/0009-0005-9879-4375; radim.chorba@gmail.com

Research field: Methods and means of increasing the productivity of the development teams

Чорба Радім Валерійович - аспірант кафедри Інженерії програмного забезпечення Національного

університету «Одеська політехніка», пр. Шевченка, 1. Одеса, 65044, Україна

